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A method is described for interpreting three-dimensional difference maps in terms of corrections 
to the positional and temperature-factor parameters of the input atoms and to the over-all scale 
parameter. The equations are somewhat more general than those previously developed by Cochran. 
They are similar to those derived by Cruickshank but, we believe, easier to handle in that  the cor- 
rections to the temperature-factor parameters are referred to the orthogonal axes of the ellipsoid 
of thermal motion rather than to the crystallographic axes. 

1. Introduction 

The detailed interpretat ion of difference maps as a 
convenient tool for the ref inement  of positional and 
temperature-factor  parameters  of non-Gaussian atoms 
was first discussed by Cochran (1951); his derivations 
were based on the analogy between a difference map 
and a least-squares calculation in which the individual  
observational  equations are weighted by  the factor 
(l/f)  ~. More recently, Cruickshank (1956) has dis- 
cussed in more detail  the  ref inement  of individual  
temperature-factor  parameters.  We here give a deriva- 
t ion somewhat  more straightforward and general t han  
Cochran's and present the results in a form more con- 
venient  t han  Cruickshank's.  

2. The re f inement  of pos i t ional  parameters  

The shifts in positional parameters  of a given atom 
m a y  be obtained from the slopes of the difference map  
at the assumed position of tha t  atom. Since the mea- 
surement  is restricted to a small  range around the 
position of the atom, the influence from the neigh- 
boring atoms may,  in general, be assumed to be 
negligible; thus, the electron densi ty of each atom 
m a y  be regarded as the :Fourier t ransform of its atomic 
form factor, f ,  mult ipl ied with the temperature  factor, 
T, independent ly  of the presence of other atoms. If 
the  origin (0, 0, 0) is placed at the assumed position 
of the atom and its real position is at  (Ax, Ay, Az), 
the  observed and calculated electron densities of the 
atom are respectively 

eo(X, y., z) = (I + A K ) . ~ . ~  ~ f T  o 
h k l 

× cos 2 z r [ h ( x - A x ) + k ( y - A y ) + l ( z - A z ) ] ,  (2"1) 
and 

~(x, y, z) = 2: 2,'.Z f T  o cos 2~(hx+ky+lz) .  (2.2) 
k l 

The factor ( I + A K )  is introduced into the expression 
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for ~o to allow for the possibil i ty t ha t  the scale factor 
K m a y  be in error; A K  would be zero if the observed 
structure factors were on the correct absolute scale. 
On a difference map, D(x, y, z ) =  Qo-Qc, the slope 
parallel  to the a axis at the assumed position of the 
atom ( x = y = z = 0 )  is 

6D) = (I +AK) .~ , .~  Z f T  ° 2gh 
0 b k l 

× sin 2:r(hAx+kAy+lAz) .  (2.3) 

Expand ing  the sine function and including only the 
l inear terms, (2.3) becomes 

~xx 0 = 4 ~ ( 1  + A K ) _ Y ~ ' ~ f T o ( h 2 A x + h k A y + h l A z ) .  
h k : (2"4) 

Similarly the slopes along the b and c axes m a y  be 
expressed as 

.Z fTo(hkAx+k~Ay+kIAz)  
h k z (2.5) 

and 

-~z o = 4:r2(1 + AK) .2.," .,~ .~ f To(hlAx + lclAy +12Az) . 
h k z (2"6) 

However, since at  x = y = z = 0 

" = ~2Q°~ = 4:z2(1 + AK) ~, 2 ~" fYo  h2 (2.7) 
~ ~X2 ] o h k : ' 

,, ~eo ~ _- 4:~2(1 +AK) ~ ~ ~ f T o h k  etc., (2.8) 
~x~ = ~x~y/o h k z ' 

the equations (2.4), 

6D/6x)o = 

6D/~y)o = 

6D/~z)o = 

(2.5), and (2.6) become 

e~Ax+e~Ay+e'~'~Az , (2-9) 
t t  t t  t t  QxyAx+~yyAy+~..dz , (2.10) 

e'z'~Ax+e'y'~Ay+e'~zAz . (2.11) 

The shifts in positional parameters  m a y  be obtained 
by solving the above sat of s imultaneous equations, 
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substituting, if more convenient, the calculated curva- 
tures (~/(~x ~, etc., for the observed ones. If the 
problem is referred to the three mutually perpendicular 
principal axes of the ellipsoidal atom, the cross terms 
of the second derivatives vanish, and the shifts in 
atomic coordinates reduce to the expressions derived 
by Cochran: 

A x  = = - 

6 D /  6Z)o 
~ t  t !  

3. The ref inement  of scale and temperature  
factors 

In treating anisotropic thermal vibrations we consider 
only the case in which the electron density of an atom 
may be assumed to be ellipsoidal; the major and minor 
axes of the ellipsoid are along the maximum and 
minimum vibration directions, respectively. The 
scattering factor of such an atom may be expressed as 

f(h)  = fo T exp [¼(AB~h~+AB.zh~+ABahg)], (3.1) 

in which f0 is the scattering factor for the atom at rest, 
T ( =  exp [-Bosin'zO/]~]) is the assumed isotropic 
temperature factor, ABe, ABe, AB a are the anisotropic 
corrections on the same scale as B o, and h~, h~, h a are 
the components of the reciprocal vector h (]hi = h = 
2 sin 0/2) along the three principal axes of the ellip- 
soids. 

The observed electron density of the atom may then 
be expressed as 

0o(r) = ( I + A K )  ofoT exp [¼(AB~h~+AB~h~+AB~h.~)] 

x exp [-2~ih.r]dVh.  (3.2) 

If the assumed temperature factor is isotropic, the 
calculated electron density is spherically symmetric:  

° N  

~ ( r )  = tofOY exp [-2~ih.r]dV~. (3.3) 

In  equations (3.2) and (3-3), ho is the cut-off limit of h, 
beyond which no reflections are observed, and the 
integration is carried over the whole volume within 
this sphere of reflection. 

From (3.2), it follows that  the peak height at the 
center of the atom (r = 0) is 

f)o qo(0) = ( I + A K )  T 

× exp [¼(AB~h~+AB.,_h~+ABah~)]dVh. (3-4) 

Expansion of (3.4) gives 

O~o(0) = ( I + A K ) q ~ ( O ) + Z , ~ q c ( O ) A B ~  (3.5) . ~  ' 
i 

with 

and 
f 

h0 

~c(O) = 4:~ h~foTdh, (3.6) 
0 
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h° 
oqc(ol h4/0Tdh. (3.7/ 

dBi -3 o 

Similarly, the curvatures of the observed electron 
density at r = 0 along each of the three principal axes 
of the ellipsoid are 

6r~. -4:~2 (1 +AK) h~foT 

× exp [¼(AB~h~+AB2h~+ABahg)]dVh 
(i = 1, 2, or 3).  (3.8) 

Expansion of (3-8) gives 

---~r2--~-=(I+AK)(~---~-r?)-~---~\ dr7 ]ABI('3.9) 

with 

~2Q~(O) S2" S~ ShOO (Sr~ -- 4:~2 0 0 h 2 cos 20foTh 2dh sin 0d0d 7, 

16~3 If° - 3 haf°Tdh (3.10) 

and 

= ~ J .Th°h .h2dh sin OdOdq) 

I I h° 

~-~a h~foTdh if i :4=j. (3.11) 
o 

If we write 

and express the height and curvatures measured from 
the difference Fourier map as D(0) and D~'(0) respec- 
tively, the following set of equations is obtained" 

D(0) = qo(0)-qc(0) 
7g 

= 47~I2AK- -~ I4(ABI+AB2+AB3), (3"12) 

D'~' (0) = __1o_ ~SI4AK +_~ u3I~(3AB 1 + AB 2 + ABs) ' 
(3.13) 

D'2' (0) = - 1.¢ 7~alaA K + i 4 ~a/6 (A B 1 + 3A B 2 + A B3), 
(3.14) 

D~' (0) = -Jr- :~aI4AK +-~ :~sI6(AB ~ + AB2 + 3ABs) . 
(3.15) 

These four expressions are analogous to the seven 
equations (2.8) derived by Cruickshank (1956); how- 
ever, in Cruickshank's t reatment  second derivatives 
of the difference map (including the cross terms) are 
measured along the crystallographic axes, whereas in 
the present t rea tment  curvatures are measured along 
the directions of the principal axes of the ellipsoid of 
thermal motion. Two of the principal axes of the 
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ellipsoid are in the directions of the maximum and 
minimum curvatures observed on the difference map; 
the third must be normal to these two. 

The integrals Ie, I4, and I0 may be calculated from 
the atomic scattering factor f0, the assumed isotropic 
temperature factor T, and the cut-off limit h 0. As an 
example, the following table contains the values of 
these integrals for carbon, nitrogen and oxygen, using 
McWeeny's form factors (1951) and temperature factor 
T = exp  [ - 3 - 2  s in 2 0/2 ~-] up 
taken with Cu K~ radiation 

to the limit of data 
(h 0 = 1.297 _~-~) 

12 (e.A -3) 14 (e.k -~) I 0 (e.k -7) 
C 0.70 0.50 0.51 
N 0.86 0.59 0.59 
O 1.05 0-70 0.68 

The values of these integrals are very sensitive to h0, 
since the values of the coefficients h'foT are usually 
large even at high angles. This sensitivity reflects the 
fact that  the high-ordered reflections have a large 
influence on the determination of the temperature 
factors. 

For a structure with N atoms in one asymmetric 
unit, 4N independent observed equations of the type 
(3.12)-(3.15) may be obtained which may be solved 
for 3 N + l  unknowns (three AB's for each of the N 
atoms and one AK); because of the symmetry of 
these equations, however, it is simpler to solve first 
for a value of AK for each atom. An average value of 
AK may be chosen and the three quaDtities, AB1, ABe, 
and AB 3 for each atom n~ay then be obtained from the 
four simultaneous equations, (3.12)-(3-15). 

In solving these four equations for the three tem- 
perature-factor corrections, an appropriate weighting 
scheme may be introduced. Thus, equation (3-12) may 
be given a low weight if it is felt that extinction 
effects or the neglect of light atoms may affect the 
accuracy of the low-order reflections and hence lead to 
uncertainty in the values of D(0); on the other hand, 
equations (3.13)-(3.15) may be given low weight if 
it is felt that  there are uncertainties in the measured 
curvatures. 

If the scale factor is assumed to be correct and if 
equation (3.12) is assigned zero weight, equations 
(3.13 )- (3.15) give the temperature-factor corrections as 

3 
AB~ =8-~3I~(4D~'(O)-D'2'(O)-D~'(O)) . (3-16) 

This expression is equivalent to Cochran's result 

3 V [4((~"D/Sr~)j-((}2D/r}r~)j- ((}2D/e~r2)~] 
u j = S ~  ~ 2 "  f j s  4 - -  ' 

?l 

the factor ~,fi~4/V in Cochran's expression being 
n 

equivalent to 

fh°h4 f dVh = f~  I~ f'~h' fh2dh sin O dOdcf = 4~I6 . 
0 0 ¢ 0  ¢ 0  

The coefficients ~, fl, y, 73, ~, and s in the general 
expression for anisotropic temperature factor 
exp (-aM--flk~-yl2-~hk-~lhl-slcl) may be obtained 
from AB1, ABe, and AB 3 and the direction cosines 
of the principal axes of the ellipsoid in a straight- 
forward manner (see, for example, Rollett & Davies, 
1955). 

The method of deriving anisotropic temperature- 
factor corrections described above applies only when 
the input electron densities are spherically symmetric, 
that  is, when the calculated structure factors in the 
coefficients of the difference Fourier contain only 
isotropic temperature factors. In practice it has been 
found that the application of this method leads to 
anisotropic temperature-factor corrections which are 
accurate within, perhaps, 20%; further small adjust- 
ments, if necessary, may be estimated. 

I t  should be pointed out that, in cases of acentric 
structures, the temperature-factor corrections derived 
by this or any similar method should be corrected by 
an n-shift analogous to that used in the refinement of 
positional parameters (Shoemaker, Donohue, Scho- 
maker & Corey, 1950). The value chosen for n depends 
in a rather complicated manner upon the particular 
structure in question. Thus, if all atoms within the 
structure vibrate in the same direction and with equal 
magnitude, the value of n should be 1; on the other 
hand, if the atoms are vibrating at random with respect 
to one another, the value of n should be that  proposed 
by Shoemaker et al. for corrections to positional para- 
meters. In the case of leucyl-prolyl-glycine (Leung & 
Marsh, 1957), where most of the atoms are vibrating 
in the same direction but with varying magnitudes, 
the value 4/3 was chosen for n, and the resulting aniso- 
tropic temperature-factor correctiol~s proved to be 
very nearly correct. 
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