The Interpretation of Difference Maps*

By Yuen C. Leung, Richard E. Marsh and Verner Schomaker
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Received 28 March 1957)

Abstract

A method is described for interpreting three-dimensional difference maps in terms of corrections to the positional and temperature-factor parameters of the input atoms and to the over-all scale parameter. The equations are somewhat more general than those previously developed by Cochran. They are similar to those derived by Cruickshank but, we believe, easier to handle in that the corrections to the temperature-factor parameters are referred to the orthogonal axes of the ellipsoid of thermal motion rather than to the crystallographic axes.

1. Introduction

The detailed interpretation of difference maps as a convenient tool for the refinement of positional and temperature-factor parameters of non-Gaussian atoms was first discussed by Cochran (1951); his derivations were based on the analogy between a difference map and a least-squares calculation in which the individual observational equations are weighted by the factor $(1 / f)^{2}$. More recently, Cruickshank (1956) has discussed in more detail the refinement of individual temperature-factor parameters. We here give a derivation somewhat more straightforward and general than Cochran's and present the results in a form more convenient than Cruickshank's.

2. The refinement of positional parameters

The shifts in positional parameters of a given atom may be obtained from the slopes of the difference map at the assumed position of that atom. Since the measurement is restricted to a small range around the position of the atom, the influence from the neighboring atoms may, in general, be assumed to be negligible; thus, the electron density of each atom may be regarded as the Fourier transform of its atomic form factor, f, multiplied with the temperature factor, T, independently of the presence of other atoms. If the origin $(0,0,0)$ is placed at the assumed position of the atom and its real position is at ($\Delta x, \Delta y, \Delta z$), the observed and calculated electron densities of the atom are respectively

$$
\begin{align*}
& \varrho_{0}(x, y, z)=(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0} \\
& \quad \times \cos 2 \pi[h(x-\Delta x)+k(y-\Delta y)+l(z-\Delta z)],
\end{align*}
$$

and

$$
\varrho_{c}(x, y, z)=\sum_{h} \sum_{k} \sum_{l} f T_{0} \cos 2 \pi(h x+k y+l z)
$$

The factor $(1+\Delta K)$ is introduced into the expression

[^0]for ϱ_{o} to allow for the possibility that the scale factor K may be in error; ΔK would be zero if the observed structure factors were on the correct absolute scale. On a difference map, $D(x, y, z)=\varrho_{o}-\varrho_{c}$, the slope parallel to the a axis at the assumed position of the atom $(x=y=z=0)$ is
\[

$$
\begin{align*}
&\left.\frac{\delta D}{\delta x}\right)_{0}=(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0} 2 \pi h \\
& \times \sin 2 \pi(h \Delta x+k \Delta y+l \Delta z)
\end{align*}
$$
\]

Expanding the sine function and including only the linear terms, ($2 \cdot 3$) becomes
$\left.\frac{\delta D}{\delta x}\right)_{0}=4 \pi^{2}(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0}\left(h^{2} \Delta x+h k \Delta y+h l \Delta z\right)$.
Similarly the slopes along the \mathbf{b} and \mathbf{c} axes may be expressed as
$\left.\frac{\delta D}{\delta y}\right)_{0}=4 \pi^{2}(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0}\left(h k \Delta x+k^{2} \Delta y+k l \Delta z\right)$
and
$\left.\frac{\delta D}{\delta z}\right)_{0}=4 \pi^{2}(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0}\left(h l \Delta x+k l \Delta y+l^{2} \Delta z\right)$.
However, since at $x=y=z=0$

$$
\begin{gather*}
\left.\varrho_{x x}^{\prime \prime}=\frac{\delta^{2} \varrho_{o}}{\delta x^{2}}\right)_{0}=4 \pi^{2}(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0} h^{2} \\
\left.\varrho_{x y}^{\prime \prime}=\frac{\delta^{2} \varrho_{o}}{\delta x \delta y}\right)_{0}=4 \pi^{2}(1+\Delta K) \sum_{h} \sum_{k} \sum_{l} f T_{0} h k, \text { etc. }
\end{gather*}
$$

the equations $(2 \cdot 4),(2 \cdot 5)$, and $(2 \cdot 6)$ become

$$
\begin{align*}
& \delta D / \delta x)_{\mathbf{0}}=\varrho_{x x}^{\prime \prime} \Delta x+\varrho_{x y}^{\prime \prime} \Delta y+\varrho_{x z}^{\prime \prime} \Delta z, \\
& \delta D / \delta y)_{\mathbf{0}}=\varrho_{x y}^{\prime \prime} \Delta x+\varrho_{y y}^{\prime \prime} \Delta y+\varrho_{y z}^{\prime \prime} \Delta z, \\
& \delta D / \delta z)_{\mathbf{0}}=\varrho_{x z}^{\prime \prime} \Delta x+\varrho_{y z}^{\prime \prime} \Delta y+\varrho_{z z}^{\prime \prime} \Delta z .
\end{align*}
$$

The shifts in positional parameters may be obtained by solving the above set of simultaneous equations,
substituting, if more convenient, the calculated curvatures $\delta^{2} \varrho_{c} / \delta x^{2}$, etc., for the observed ones. If the problem is referred to the three mutually perpendicular principal axes of the ellipsoidal atom, the cross terms of the second derivatives vanish, and the shifts in atomic coordinates reduce to the expressions derived by Cochran:

$$
\Delta x=\frac{\delta D / \delta x)_{0}}{\varrho_{x x}^{\prime \prime}}, \Delta y=\frac{\delta D / \delta y)_{0}}{\varrho_{y y}^{\prime \prime}}, \Delta z=\frac{\delta D / \delta z)_{0}}{\varrho_{z z}^{\prime \prime}}
$$

3. The refinement of scale and temperature factors

In treating anisotropic thermal vibrations we consider only the case in which the electron density of an atom may be assumed to be ellipsoidal; the major and minor axes of the ellipsoid are along the maximum and minimum vibration directions, respectively. The scattering factor of such an atom may be expressed as

$$
f(\mathbf{h})=f_{0} T \exp \left[\frac{1}{4}\left(\Delta B_{1} h_{1}^{2}+\Delta B_{2} h_{2}^{2}+\Delta B_{3} h_{3}^{2}\right)\right]
$$

in which f_{0} is the scattering factor for the atom at rest, $T\left(=\exp \left[-B_{0} \sin ^{2} \theta / \lambda^{2}\right]\right)$ is the assumed isotropic temperature factor, $\Delta B_{1}, \Delta B_{2}, \Delta B_{3}$ are the anisotropic corrections on the same scale as B_{0}, and h_{1}, h_{2}, h_{3} are the components of the reciprocal vector $\mathbf{h}(|\mathbf{h}|=h=$ $2 \sin \theta / \lambda$) along the three principal axes of the ellipsoids.

The observed electron density of the atom may then be expressed as

$$
\begin{array}{r}
\varrho_{o}(\mathbf{r})=(1+\Delta K) \int_{0}^{h_{0}} f_{0} T \exp \left[\frac{1}{4}\left(\Delta B_{1} h_{1}^{2}+\Delta B_{2} h_{2}^{2}+\Delta B_{3} h_{3}^{2}\right)\right] \\
\times \exp [-2 \pi i \mathbf{h} . \mathbf{r}] d V_{h} .
\end{array}
$$

If the assumed temperature factor is isotropic, the calculated electron density is spherically symmetric:

$$
\varrho_{c}(\mathbf{r})=\int_{0}^{h_{0}} f_{0} T \exp [-2 \pi i \mathbf{h} . \mathbf{r}] d V_{h}
$$

In equations (3.2) and (3.3), h_{0} is the cut-off limit of h, beyond which no reflections are observed, and the integration is carried over the whole volume within this sphere of reflection.

From (3•2), it follows that the peak height at the center of the atom ($\mathbf{r}=0$) is

$$
\begin{align*}
\varrho_{o}(0)= & (1+\Delta K) \int_{0}^{h_{0}} f_{0} T \\
& \times \exp \left[\frac{1}{4}\left(\Delta B_{1} h_{1}^{2}+\Delta B_{2} h_{2}^{2}+\Delta B_{3} h_{3}^{2}\right)\right] d V_{h}
\end{align*}
$$

Expansion of (3.4) gives

$$
\varrho_{o}(0)=(1+\Delta K) \varrho_{c}(0)+\sum_{i} \frac{\delta \varrho_{c}(0)}{\delta B_{i}} \Delta B_{i}
$$

with

$$
\varrho_{c}(0)=4 \pi \int_{0}^{h_{0}} h^{2} f_{0} T d h
$$

and

$$
\frac{\delta \varrho_{c}(0)}{\delta B_{i}}=\frac{\pi}{3} \int_{0}^{h_{0}} h^{4} f_{0} T d h
$$

Similarly, the curvatures of the observed electron density at $r=0$ along each of the three principal axes of the ellipsoid are

$$
\begin{align*}
\frac{\delta^{2} \varrho_{o}(0)}{\delta r_{i}^{2}}= & -4 \pi^{2}(1+\Delta K) \int_{0}^{h_{0}} h_{i}^{2} f_{0} T \\
& \times \exp \left[\frac{1}{4}\left(\Delta B_{1} h_{1}^{2}+\Delta B_{2} h_{2}^{2}+\Delta B_{3} h_{3}^{2}\right)\right] d V_{h} \\
& (i=1,2, \text { or } 3)
\end{align*}
$$

Expansion of (3.8) gives
$\frac{\delta^{2} \varrho_{o}(0)}{\delta r_{i}^{2}}=(1+\Delta K)\left(\frac{\delta^{2} \varrho_{c}(0)}{\delta r_{i}^{2}}\right)-\sum_{j} \frac{\delta}{\delta \Delta B_{j}}\left(\frac{\delta^{2} \varrho_{c}(0)}{\delta r_{i}^{2}}\right) \Delta B_{j}$,
with

$$
\begin{align*}
\frac{\delta^{2} \varrho_{c}(0)}{\delta r_{i}^{2}} & =-4 \pi^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{h_{0}} h^{2} \cos ^{2} \theta f_{0} T h^{2} d h \sin \theta d \theta d \varphi \\
& =-\frac{16 \pi^{3}}{3} \int_{0}^{h_{0}} h^{4} f_{0} T d h
\end{align*}
$$

and

$$
\begin{align*}
\frac{\delta}{\delta B_{j}}\left(\frac{\delta^{2} \varrho_{c}(0)}{\delta r_{i}^{2}}\right) & =\pi^{2} \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{h_{0}} f_{0} T h_{i}^{2} h_{j}^{2} h^{2} d h \sin \theta d \theta d \varphi \\
& = \begin{cases}\frac{4}{5} \pi^{3} \int_{0}^{h_{0}} h^{6} f_{0} T d h \quad \text { if } i=j, \\
\frac{4}{15} \pi^{3} \int_{0}^{h_{0}} h^{6} f_{0} T d h \quad \text { if } i \neq j,\end{cases}
\end{align*}
$$

If we write

$$
I_{n}=\int_{0}^{h_{0}} h^{n} f_{0} T d h
$$

and express the height and curvatures measured from the difference Fourier map as $D(0)$ and $D_{i}^{\prime \prime}(0)$ respec. tively, the following set of equations is obtained:

$$
\begin{align*}
& D(0)=\varrho_{o}(0)-\varrho_{c}(0) \\
& =4 \pi I_{2} \Delta K-\frac{\pi}{3} I_{4}\left(\Delta B_{1}+\Delta B_{2}+\Delta B_{3}\right), \\
& D_{1}^{\prime \prime}(0)=-\frac{1}{3}-\pi^{3} I_{4} \Delta K+\frac{4}{1^{4}} \pi^{3} I_{6}\left(3 \Delta B_{1}+\Delta B_{2}+\Delta B_{3}\right), \\
& D_{2}^{\prime \prime}(0)=-1{ }^{6}-\pi^{3} I_{4} \Delta K+\frac{4}{15} \pi^{3} I_{6}\left(\Delta B_{1}+3 \Delta B_{2}+\Delta B_{3}\right) \text {, } \\
& D_{3}^{\prime \prime}(0)=-\frac{1}{3}-\pi^{3} I_{4} \Delta K+{ }_{\mathrm{T}^{4}}{ }^{4} \pi^{3} I_{6}\left(\Delta B_{1}+\Delta B_{2}+3 \Delta B_{3}\right) .
\end{align*}
$$

These four expressions are analogous to the seven equations (2-8) derived by Cruickshank (1956); however, in Cruickshank's treatment second derivatives of the difference map (including the cross terms) are measured along the crystallographic axes, whereas in the present treatment curvatures are measured along the directions of the principal axes of the ellipsoid of thermal motion. Two of the principal axes of the
ellipsoid are in the directions of the maximum and minimum curvatures observed on the difference map; the third must be normal to these two.

The integrals I_{2}, I_{4}, and I_{6} may be calculated from the atomic scattering factor f_{0}, the assumed isotropic temperature factor T^{\prime}, and the cut-off limit h_{0}. As an example, the following table contains the values of these integrals for carbon, nitrogen and oxygen, using McWeeny 's form factors (1951) and temperature factor $T=\exp \left[-3 \cdot 2 \sin ^{2} \theta / \lambda^{2}\right]$ up to the limit of data taken with $\mathrm{Cu} K \alpha$ radiation ($h_{0}=1 \cdot 297 \AA^{-1}$)

	$I_{2}\left(\mathrm{e} . \AA^{-3}\right)$	$I_{4}\left(\mathrm{e} . \AA^{-5}\right)$	$I_{6}\left(\mathrm{e} . \AA^{-7}\right)$
C	0.70	0.50	0.51
N	0.86	0.59	0.59
O	1.05	0.70	0.68

The values of these integrals are very sensitive to h_{0}, since the values of the coefficients $h^{n} f_{0} T$ are usually large even at high angles. This sensitivity reflects the fact that the high-ordered reflections have a large influence on the determination of the temperature factors.

For a structure with N atoms in one asymmetric unit, $4 N$ independent observed equations of the type $(3 \cdot 12)-(3 \cdot 15)$ may be obtained which may be solved for $3 N+1$ unknowns (three ΛB 's for each of the N atoms and one ΔK); because of the symmetry of these equations, however, it is simpler to solve first for a value of ΔK for each atom. An average value of ΔK may be chosen and the three quantities, $\Delta B_{1}, \Delta B_{2}$, and ΔB_{3} for each atom may then be obtained from the four simultaneous equations, $(3 \cdot 12)-(3 \cdot 15)$.

In solving these four equations for the three tem-perature-factor corrections, an appropriate weighting scheme may be introduced. Thus, equation (3•12) may be given a low weight if it is felt that extinction effects or the neglect of light atoms may affect the accuracy of the low-order reflections and hence lead to uncertainty in the values of $D(0)$; on the other hand, equations ($3 \cdot 13$)-(3.15) may be given low weight if it is felt that there are uncertainties in the measured curvatures.

If the scale factor is assumed to be correct and if equation ($3 \cdot 12$) is assigned zero weight, equations $(3 \cdot 13)-(3 \cdot 15)$ give the temperature-factor corrections as

$$
\Delta B_{1}=\frac{3}{8 \pi^{3} I_{6}}\left(4 D_{1}^{\prime \prime}(0)-D_{2}^{\prime \prime}(0)-D_{3}^{\prime \prime}(0)\right)
$$

This expression is equivalent to Cochran's result

$$
u_{j}=\frac{3 V\left[4\left(\delta^{2} D / \delta r_{1}^{2}\right)_{j}-\left(\delta^{2} D / \delta r_{2}^{2}\right)_{j}-\left(\delta^{2} D / \delta r^{2}\right)_{j}\right]}{8 \pi^{2} \sum_{n} f_{j} s^{4}}
$$

the factor $\sum_{n} f \varepsilon^{4} / V$ in Cochran's expression being equivalent to

$$
\int_{0}^{h_{0}} h^{4} f d V_{h}=\int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{h_{0}} h^{4} f h^{2} d h \sin \theta d \theta d \varphi=4 \pi I_{6}
$$

The coefficients $\alpha, \beta, \gamma, \delta, \eta$, and ε in the general expression for anisotropic temperature factor $\exp \left(-\alpha h^{2}-\beta k^{2}-\gamma l^{2}-\delta h k-\eta h l-\varepsilon k l\right)$ may be obtained from $\Delta B_{1}, \Delta B_{2}$, and ΔB_{3} and the direction cosines of the principal axes of the ellipsoid in a straightforward manner (see, for example, Rollett \& Davies, 1955).

The method of deriving anisotropic temperaturefactor corrections described above applies only when the input electron densities are spherically symmetric, that is, when the calculated structure factors in the coefficients of the difference Fourier contain only isotropic temperature factors. In practice it has been found that the application of this method leads to anisotropic temperature-factor corrections which are accurate within, perhaps, 20%; further small adjustments, if necessary, may be estimated.

It should be pointed out that, in cases of acentric structures, the temperature-factor corrections derived by this or any similar method should be corrected by an n-shift analogous to that used in the refinement of positional parameters (Shoemaker, Donohue, Schomaker \& Corey, 1950). The value chosen for n depends in a rather complicated manner upon the particular structure in question. Thus, if all atoms within the structure vibrate in the same direction and with equal magnitude, the value of n should be 1 ; on the other hand, if the atoms are vibrating at random with respect to one another, the value of n should be that proposed by Shoemaker et al. for corrections to positional parameters. In the case of leucyl-prolyl-glycine (Leung \& Marsh, 1957), where most of the atoms are vibrating in the same direction but with varying magnitudes, the value $4 / 3$ was chosen for n, and the resulting anisotropic temperature-factor corrections proved to be very nearly correct.

References

Cochran, W. (1951). Acta Cryst. 4, 408.
Cruiceshank, D. W. J. (1956). Acta Cryst. 9, 747.
Leung, Y. C. \& Marsh, R. E. (1957). Acta Cryst. In the Press.
McWeeny, R. (1951). Acta Cryst. 4, 513.
Rollett, J. S. \& Davies, D. R. (1955). Acta Cryst. 8, 125.

Shoemaker, D. P., Donohue, J., Schomaker, V. \&
Corey, R. B. (1950). J. Amer. Chem. Soc. 72, 2328.

[^0]: * Contribution No. 2195 from the Gates and Crellin Labo ratories. This work was supported, in part, by a contract (Nonr-220(05)) between the Office of Naval Research and the California Institute of Technology.

